5t/d一體化污水處理設備
需要污水處理設備,可直接咨詢,廠家直接供貨。
現貨,專車送貨到客戶現場、派人安裝。
公司主抓產品:地埋式一體化污水處理設備、氣浮機、二氧化氯發生器、加藥裝置、絮凝沉淀設備、疊螺污泥脫水機、機械格柵、板框壓濾機、玻璃鋼化糞池、一體化污水提升泵站等。
MBBR工藝原理是通過向反應器中投加一定數量的懸浮載體,提高反應器中的生物量及生物種類,從而提高反應器的處理效率。由于填料密度接近于水,所以在曝氣的時候,與水呈*混合狀態,微生物生長的環境為氣、液、固三相。載體在水中的碰撞和剪切作用,使空氣氣泡更加細小,增加了氧氣的利用率。另外,每個載體內外均具有不同的生物種類,內部生長一些厭氧菌或兼氧菌,外部為好養菌,這樣每個載體都為一個微型反應器,使硝化反應和反硝化反應同時存在,從而提高了處理效果。MBBR工藝兼具傳統流化床和生物接觸氧化法兩者的優點,是一種新型高效的污水處理方法,依靠曝氣池內的曝氣和水流的提升作用使載體處于流化狀態,進而形成懸浮生長的活性污泥和附著生長的生物膜,這就使得移動床生物膜使用了整個反應器空間,充分發揮附著相和懸浮相生物兩者的*性,使之揚長避短,相互補充。與以往的填料不同的是,懸浮填料能與污水頻繁多次接觸因而被稱為“移動的生物膜”。
懸浮生物填料上主要附著異養菌和硝化菌,通過硝化作用去除原污水中的氨氮,同時對COD也有很好的去除效果。根據進水水質及出水標準要求,還可以設計成①A/O膜反應器②A/O硝化反硝化反應器+MBR 。

技術關鍵
微生物的掛膜培養,合理控制溶解氧與HRT,填料填充率。
技術優點
與活性污泥法和固定填料生物膜法相比,MBBR既具有活性污泥法的高效性和運轉靈活性,又具有傳統生物膜法耐沖擊負荷、泥齡長、剩余污泥少的特點。
(1)填料特點
填料多為聚乙烯、聚丙烯及其改性材料、聚氨酯泡沫體等制成的,比重接近于水,以圓柱狀和球狀為主,易于掛膜,不結團、不堵塞、脫膜容易。
(2)良好的脫氮能力
填料上形成好養、缺氧和厭氧環境,硝化和反硝化反應能夠在一個反應器內發生,對氨氮的去除具有良好的效果。
(3)去除有機物效果好
反應器內污泥濃度較高,一般污泥濃度為普通活性污泥法的5~10倍,可高達30~40g/L。提高了對有機物的處理效率,同時耐沖擊負荷能力強。
(4)易于維護管理
曝氣池內無需設置填料支架,對填料以及池底的曝氣裝置的維護方便,同時能夠節省投資及占地面積。

對MBBR工藝的建議
(1)懸浮填料的研究和開發
應對填料表面的化學特性及懸浮填料的脫落機制進行深入的研究,增加填料的比表面積;應盡可能地降低懸浮填料的造價,使懸浮填料能更廣泛地應用于污水處理。可采用活性炭、淀粉、明膠等作為生物活性添加劑,使懸浮填料能夠促進微生物的生長和繁殖。
(2) MBBR與其它工藝的組合
多級MBBR、MBBR和A/O法聯合工藝等都具有各自的優點,對這些組合工藝應加強研究并進行實際應用。
(3) MBBR工藝反應器的研究
通過對反應器流體力學的研究,確定反應器的形狀,以達到優化的反應器結構,從而避免填料堆積,降低能耗。可以初步研究多級串聯連續式懸浮填料移動床反應器的結構型式與操控方案,為項目技術的推廣應用奠定基礎。
生物膜法是一種高效的廢水處理方法,具有污泥量少,不會引起污泥膨脹,對廢水的水質和水量的變動具有較好的適應能力,運行管理簡單等特點。
生物膜法是使微生物附著在載體表面上并形成生物膜,當污水流經載體表面時,污水中的有機物及溶解氧向生物膜內部擴散。膜內微生物在有氧存在的情況下對有機物進行分解代謝和機體合成代謝,同時分解的代謝產物從生物膜擴散到水相和空氣中,從而使廢水中的有機物得以降解。
5t/d一體化污水處理設備活性污泥法和生物膜法的區別不僅僅是微生物的懸浮與附著之分,更重要的是擴散過程在生物膜處理系統中是一個必須考慮的因素。
在生物膜反應器中,有機污染物、溶解氧及各種必須的營養物質首先要從液相擴散到生物膜表面,進而進到生物膜內部,只有擴散到生物膜表面或內部的污染物才有可能被生物膜內微生物分解與轉化,終形成各種代謝產物。
另外,在生物膜反應器中,由于微生物被固定在載體上,從而實現了SRT與HRT(水力停留時間)的分離,使得增殖速率慢的微生物也能生長繁殖。因此,生物膜是一穩定的、多樣的微生物生態系統。
生物膜的形成原理(掛膜過程)
生物膜的形成過程是微生物吸附、生長、脫落等綜合作用的動態過程。
首先,懸浮于液相中的有機污染物及微生物移動并附著在載體表面上;然后,附著在載體上的微生物對有機污染物進行降解,并發生代謝、生長、繁殖等過程,并逐漸在載體的局部區域形成薄的生物膜,這層生物膜具有生化活性,又可進一步吸附、分解廢水中有機污染物,直至后形成一層將載體*包裹的成熟的生物膜。
微生物膜的形成通常經歷載體表面改良、可逆附著、不可逆附著、生物膜形成四個階段,具體描述如下:
微生物在載體上的掛膜可分為微生物吸附和固著生長兩個階段。載體加入水體以后,首*入吸附期。有部分微生物和絲狀物質已經附著在載體表面,附著了較多物質的位置往往是載體的凹處,不容易被水流剪切的地方。此時懸浮液中的微生物大量增長,出現較明顯的一個污泥層。
經過不可逆附著以后,微生物在載體表面獲得一個比較穩定的生長環境,在供氧和底物充足的情況下,吸附在載體上的污泥中的微生物很快就開始生長。
隨著培養馴化時間的增長,在載體表面生長的生物膜也迅速增長,逐漸覆蓋整個載體表面,并開始增厚。但生物膜的生長并不均勻,在載體比較突出的地方,生物膜比較薄,而凹處則會長出相當繁盛的菌落,可見水力剪切對生物膜的生長具有重要的影響。在載體表面附著生長的微生物種類也很繁多,除了累枝蟲、鐘蟲外,還可觀察到絲狀菌、球菌、桿菌等,還有一些游泳性的細菌在活動。隨著載體上附著了越來越多的生物膜,載體的表觀密度逐漸會下降,變得更輕,更容易流態化,同時在下降區的載體下降速度有所變慢。
生物膜形成的影響因素
生物膜的形成與載體表面性質(載體表面親水性、表面電荷、表面化學組成和表面粗糙度)、微生物的性質(微生物的種類、培養條件、活性和濃度)及環境因素(PH值、離子強度、水力剪切力、溫度、營養條件及微生物與載體的接觸時間)等因素有關。
載體表面性質
載體表面電荷性、粗糙度、粒徑和載體濃度等直接影響著生物膜在其表面的附著、形成。在正常生長環境下,微生物表面帶有負電荷。如果能通過一定的改良技術,如化學氧化、低溫等離子體處理等可使載體表面帶有正電荷,從而可使微生物在載體表面的附著、形成過程更易進行。載體表面的粗糙度有利于細菌在其表面附著、固定。
一方面,與光滑表面相比,粗糙的載體表面增加了細菌與載體間的有效接觸面積;另一方面載體表面的粗糙部分,如孔洞、裂縫等對已附著的細菌起著屏蔽保護作用,使它們免受水力剪切力的沖刷。